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wo-dimensional discrete particle model: Comment on the
umerical simulation of cluster flow behavior in the riser of
irculating fluidized beds by Liu and Lu

In a recent paper, Liu and Lu [1] reported the results of a numer-
cal study on the cluster flow behavior in the riser of circulating
uidized beds using a two-dimensional discrete particle model
2D-DPM). Below we discuss the severe shortcomings of the phase
oupling scheme used in the context of a two-dimensional DPM.

The 2D-DPM has been widely used to study the gas–solid flow
ehavior in fluidized bed since it was first introduced by Tsuji et al.
2] for the soft-sphere version and Hoomans et al. [3] for the hard-
phere approach. When a finite volume method is applied, the local
D voidage ε2D can be calculated based on the space or area occu-
ied by the particles in the 2D grid cells. This is not consistent with
he empirical drag formula in which the correlated porosity ε3D is
valuated based on real 3D systems. To correct this inconsistency,
wo strategies are often used to transform the 2D porosity. The first
ne was suggested by Hoomans et al. [3] and it is described by the
ollowing equation:

3D = 1 − 2√
�

√
3

(1 − ε2D)3/2 (1)

This equation is derived on the basis of a comparison between
2D hexagonal lattice and a 3D cubic lattice assuming equal inter-
article distances. The second strategy was presented by Xu and Yu
4], in which the 2D domain is regarded as a pseudo 3D one with a
hickness of one particle diameter.

Liu and Lu [1] have opted for the first strategy. In this work, the
ource term due to particle drag in the gas momentum equations
as evaluated using the following equation (Eq. (5) in [1])

p−g =
∑N

i=1fd,i

s
(2)

is the number of particles in the area s. Similar formula can also be
ound in their earlier publications [5–8]. This formula ensures that
he interaction forces between the two phases are equal and have
everse directions as stated in [1,5–7]. However this scheme under-
redicts the momentum source term, which results in a much

ower prediction of the pressure drop of the fluidized bed and erro-
eous prediction of the minimum fluidization velocity. This can be
emonstrated if we consider a 2D stagnant bed at the incipient flu-

dization state. Since the particles are homogeneously distributed
n the bed without any motion, the gas flow is steady and the

radients of the static pressure are constant. The gas momentum
quation (Eq. (2) in [1]) in the vertical direction is reduced to

εg
∂p

∂y
− Sp−g − εg�gg = 0 (3)
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Applying the finite volume method, integration of the above
equation over a 2D grid cell reads

−εg
∂p

∂y
�x�y −

Nc∑
i=1

fd,i − �x�yεg�gg = 0 (4)

where Nc is the number of particles in the cell. The particle momen-
tum equation (Eq. (7) in [1]) is reduced to

−�

6
d3

i

∂p

∂y
+ fd,i − mig = 0 (5)

Summation over all particles in the cell reads

−�

6
∂p

∂y

Nc∑
i=1

d3
i +

Nc∑
i=1

fd,i − g

Nc∑
i=1

mi = 0 (6)

The addition of Eqs. (4) and (6) yields

−∂p

∂y
=
(

�
∑Nc

i=1d3
i

�
∑Nc

i=1d3
i

+ 6εg�x�y

)
�pg

+
(

6εg�x�y

�
∑Nc

i=1d3
i

+ 6εg�x�y

)
�gg (7)

It is well known that the pressure drop across a stagnant bed
at the incipient fluidization state is equal to the weight of the bed.
Thus the pressure gradient reads as

−∂p

∂y
= (1 − εg)�pg + εg�gg (8)

It is very easy to prove that the pressure drop estimated by Eq. (7)
is much less than that computed using Eq. (8). This is true whether
the void fraction εg is calculated by Eq. (1) or when it is taken equal
to ε2D, given that the particle size should be always smaller than the
cell size for DPM calculations. Thus the two-phase coupling scheme
presented by Liu and Lu [1] yields an extremely under-predicted
pressure drop, and thus an erroneous prediction of the minimum
fluidization velocity. Actually Eq. (7) is equivalent to Eq. (8) only
when the void fraction is evaluated by

εg = 1 − �
∑Nc

i d3
i

6�x�y
(9)

Obviously formula (9) over-predicts the void fraction compared

to its exact value for a 3D system. Since the pressure gradient force
plays a very important role in the two- phase motion, the two-phase
coupling scheme presented in [1,5–8] may cause an inaccurate
analysis of the gas-particle flow behavior in the circulating fluidized
bed riser.
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